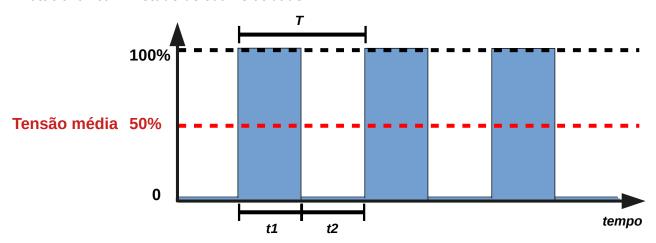
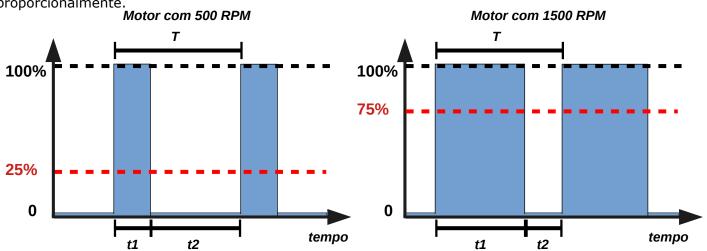


Como utilizar uma saída PWM

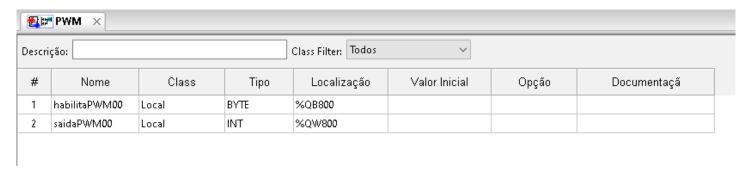

O que é PWM?

O acrônimo PWM, do inglês "Pulse Width Modulation", significa "Modulação por largura de pulso". Em controladores lógicos programáveis, é um recurso comumente utilizado para variar a potência elétrica de uma carga, modulando a largura do pulso de uma saída digital em uma frequência fixa.


Por exemplo, um Servomotor DC que rotaciona a 2000 RPM, chega ao máximo de sua rotação quando é aplicado 100% de sua tensão nominal.

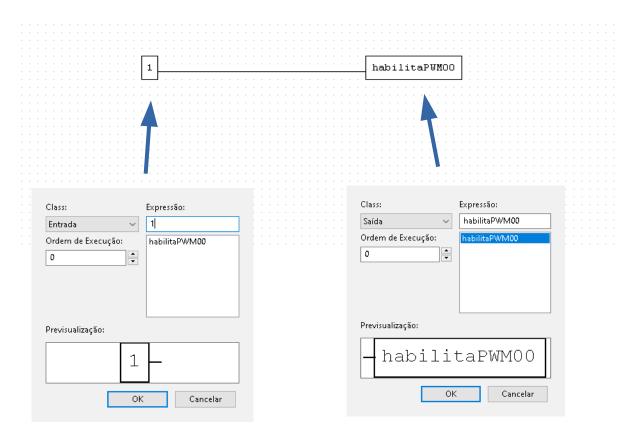
Para conseguir uma rotação de **1000 RPM** utilizando PWM, a saída digital que aciona o motor é pulsada em uma frequência rápida (**T**). Em metade do tempo a saída fica em "100%" (**t1**) e na outra metade, em "0"(**t2**). A tensão média nesse momento é aproximadamente 50% da tensão máxima, fazendo o motor rotacionar com metade de sua velocidade.

Dessa forma, variando a largura do pulso do PWM, a velocidade do motor também varia proporcionalmente.



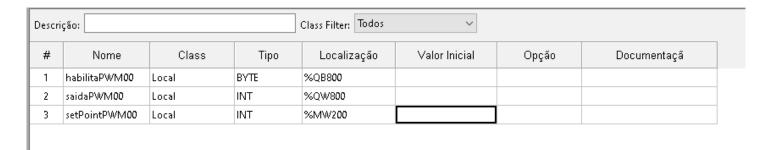
As saídas PWM também são amplamente utilizadas para o controle de válvulas proporcionais através da variação de corrente elétrica.

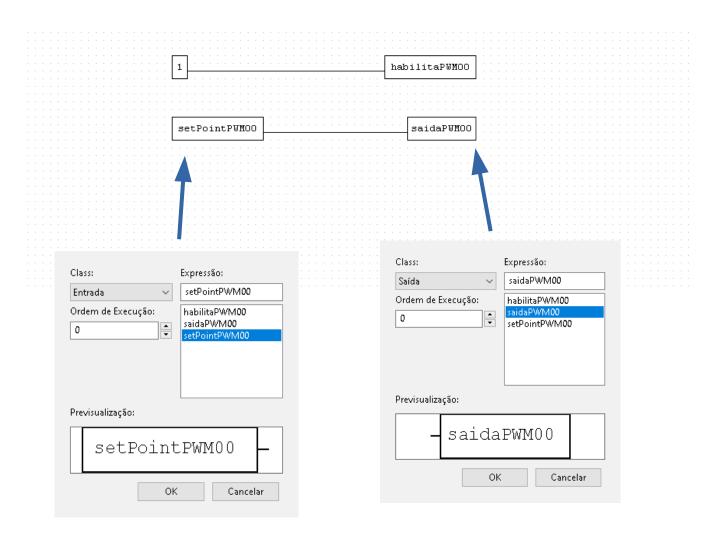
Utilizando uma saída PWM no CLP Branqs


Cada placa de saídas digitais BC8S pode ter uma saída PWM, que será sempre a saída de número quatro. Caso a saída PWM da placa esteja desabilitada, a saída quatro funcionará como uma saída digital comum.

Para utilizar uma saída PWM, é preciso primeiramente declara-la no OpenPLC:

- A variável habilitaPWM00, com endereço %QB800, representa a placa BC8S que utilizará o recurso PWM. Nesse exemplo, será utilizada a primeira placa BC8S do sistema. Caso fosse utilizada a segunda placa, o endereço seria %QB801 e assim consecutivamente;
- A variável saidaPWM00,com o endereço %QW800, representa a saída PWM da primeira placa BC8S do sistema. No caso da utilização da saída PWM da segunda placa BC8S do sistema, o endereço seria %QW801 e assim consecutivamente.

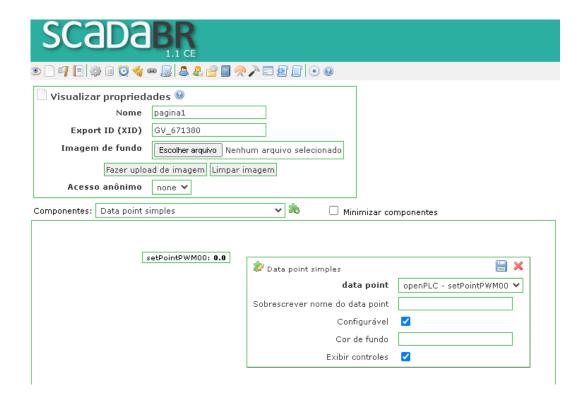

Após a declaração das variáveis referentes a habilitação e utilização do PWM, é preciso habilitar a comunicação com o módulo do CLP declarado:



Com a placa BC8S que utilizará o PWM já declarada e habilitada, o próximo passo é a criação de uma lógica para editar o PWM na IHM.

Para isso, é necessário a declaração de uma variável que possa ser manipulada pela IHM e utilizada na lógica do CLP:

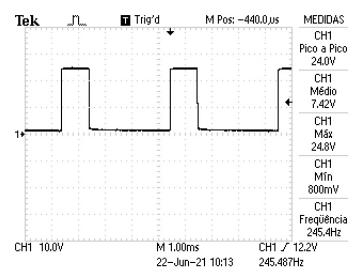
• A variável **setPointPWM00** foi declarada com o endereço **"%MW200"**, que é um endereço reservado para uso geral. Essa variável receberá os valores editados na IHM e enviará para o PWM.


Dentro do ScadaBR, a variável **setPointPWM00** é declarada como um Data point, que é vinculado ao Data source da comunicação entre o OpenPLC e o ScadaBR:

©2009-2011 Fundação Certi, MCA Sistemas, Unis Sistemas, Conetec. Todos os direitos reservados

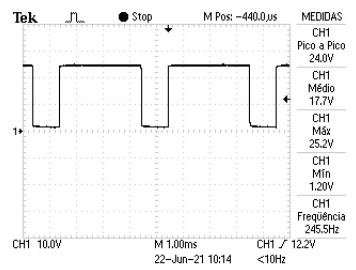
- A faixa de registro do Data point deve ser **Registrador holding**, indicando que um valor programado no ScadaBR saíra para o OpenPLC;
- O tipo de dados deve ser Inteiro de 2 bytes sem sinal, permitindo uma programação de 0 a 65535;
- O valor de Offset é definido por 1024 + o endereço atribuído à variável. Nesse caso, como a variável setPointPWM00 foi declarada com o valor de %MW200 no OpenPLC, o Offset no ScadaBR é 1224;
- O check box com a opção **Configurável** deve estar habilitado, permitindo a edição do Data point na representação gráfica do ScadaBR.

Para acrescentar o Data point na visualização gráfica do ScadaBR, deve ser criado um componente do tipo **Data point simples**, que será refereciado ao **setPointPWM00**. O check box **Configurável** também deve estar habilitado na visualização gráfica, para permitir a edição dos valores:



Após acrescentar o **setPointPWM00** na visualização gráfica, é possível manipular a saída PWM através do ScadaBR.

A saída PWM possui 10 bits de resolução, ou seja, podem ser programados valores de 0 a 1023, que são equivalentes a programação de 0 a 100% do PWM.


Ao programar um valor de 256, o pulso equivale a cerca 25% da frequência. Abaixo, programação do valor do PWM na representação gráfica do ScadaBR, e uma imagem do osciloscópio ligado diretamente à saída PWM:

Programando um valor de 768, o PWM assume um valor de cerca de 75% da frequência:

Controle de revisões

Versão: 01 Revisão: 00 Data: 22/06/2021

Autor: Thiago La Pastina

Descrição: Versão inicial do documento

Nota: Este documento é totalmente original e de propriedade intelectual do autor. Nenhuma parte pode ser copiada ou reproduzida de qualquer forma sem a autorização por escrito da Branqs Automação LTDA.